A New Proof of the Noncommutative Banach-stone Theorem
نویسندگان
چکیده
Surjective isometries between unital C*-algebras were classified in 1951 by Kadison [K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s theorem and supplying some supplementary lemmas. Here we combine an observation of Paterson and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fundamentally new proof of the structure of surjective isometries between (nonunital) C*-algebras. In the final section we indicate how our techniques may be applied to classify surjective isometries of noncommutative L spaces, extending the main results of [S1] to 0 < p ≤ 1.
منابع مشابه
A new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملA noncommutative version of the Banach-Stone theorem (II).
A noncommutative version of the Banach-Stone theorem (II). Abstract In this paper, we extend the Banach-Stone theorem to the non commutative case, i.e, we give a partial answere to the question 2.1 of [13], and we prove that the structure of the postliminal C *-algebras A determines the topology of its primitive ideals space.
متن کاملSe p 20 01 A noncommutative version of the Banach - Stone Theorem
In this paper, we extend the Banach-Stone theorem to the non commutative case, i.e, we prove that the structure of the liminal C *-algebras A determines the topology of its primitive ideal space.
متن کاملRosenthal Inequalities in Noncommutative Symmetric Spaces
We give a direct proof of the ‘upper’ Khintchine inequality for a noncommutative symmetric (quasi-)Banach function space with nontrivial upper Boyd index. This settles an open question of C. Le Merdy and the fourth named author [24]. We apply this result to derive a version of Rosenthal’s theorem for sums of independent random variables in a noncommutative symmetric space. As a result we obtain...
متن کاملThe Noncommutative Hahn-banach Theorems
The Hahn-Banach theorem in its simplest form asserts that a bounded linear functional defined on a subspace of a Banach space can be extended to a linear functional defined everywhere, without increasing its norm. There is an order-theoretic version of this extension theorem (Theorem 0.1 below) that is often more useful in context. The purpose of these lecture notes is to discuss the noncommuta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006